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Abstract— This paper presents the novel application of the contro] volume finite element method
(CVFE), otherwise known as the vertex-centered control volume scheme, to creep problems. The
discretisation procedure is valid for both structured and unstructured meshes thus enabling complex
geometries to be modelled. Analytical solutions to engineering problems involving creep often do
not exist, therefore, a comparison with the well established numerical solution technique, the finite
element method, has been included to provide a benchmark solution. @5 1998 Elsevier Science Ltd.

INTRODUCTION

Materials often exhibit a long-term behaviour which is different to that defined by elasto-
plastic theories which model the instantaneous time-independent response. Consider the
case where a bar is subjected to a constant load. The initial response of the bar is to deform
elastically, developing internal forces required to support the load. Over an extended period
of time, the bar will continue to deform, without an increase in the applied load, which
may eventually result in rupture or ultimate failure. This time-dependent behaviour is
known as creep.

Analytical solutions exist in only the simplest of cases. Most engineering problems are
comprised of complex geometries and loading configurations making an analytical solution
impossible. In order to achieve a solution, a numerical solution technique must be employed.
Over the past 25 years, the finite element method (FE) has been utilised successfully to
predict stress/strain distributions associated with materials under thermal and mechanical
loadings, Zienkiewicz and Cormeau (1974) and Duxbury ez al. (1994). In the past, contro!
volume techniques have struggled against the finite element method due to their reliance
upon structured meshes, Patankar (1980), and, hence, have been perceived as disadvantaged
when modelling complex shapes.

Two control volume, or finite volume, methods exist. The most common is the cell-
centred approach which requires that a rectangular grid be employed. Recently, Turner
and Ferguson (1995a, 1995b) developed a variation of the cell-centred scheme which
enabled polygonal cells of any order to be utilised, thus enabling complex geometrical
shapes to be meshed.

The second control volume method was first proposed by Patankar (1980) and is a
hybrid of the cell-centred approach and the finite element method. This scheme is known
as the vertex-centred control volume method or alternatively as the control volume finite
element method (CVFE). Control volumes are constructed about the modal points of a
finite element mesh, which is used solely for the interpolation of the system variables within
the computational domain. Linear triangular or quadrilateral elements are used in the
background interpolation grid giving rise to high ordered cells in the control volume
computational grid. High ordered cells, in relation to the control volume method, are
control volumes with a large number of faces which in turn increases the accuracy of the
mass, energy or force balance across the boundary of the control volume. Ferguson and
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Turner (1995a) compared the two control volume schemes and concluded that the vertex-
centred was the more accurate for an anisotropic material due to the interpolating functions
employed.

The CVFE method has been employed in fields as diverse as reservoir modelling, Fung
et al. (1992), casting problems, Bailey er al. (1993), and elasticity, Bailey er al. (1995).
Taylor et al. (1995) and Onate et al. (1994). This paper presents the novel application of
the control volume finite element method to creep problems. The discretisation procedure
is described in detail and 1s applicable to both structured and unstructured meshes without
alteration to the formulation. Two practical creep problems are solved, firstly for a beam
for which an analytic solution exists, and secondly for drying stresses in timber. A finite
element solution is employed in both numerical examples purely as a benchmark in order
to ascertain the validity of the CVFE solution and to ensure that the correct solution
characteristics are obtained.

CREEP MODEL

A tensile specimen under a constant stress will deform with time, this phenomenom is
known as ecreep. This deformation depends on three main parameters, stress, time and
temperature. A general creep equation can be written as

& =flo.1,T). (H
A useful approximation is to limit this general function to a commutative law of the form
& = fi{o) [2(0) /5(T). (2)

The separation of the functions f,(¢), f:(¢f) and f5(T) has been implicit in most of the
previously published work and first emerged during early studies of secondary creep by
Andrade (1910) and McVetty (1934, 1943).

The stress-strain relationship for creep problems in timber, Ranta-Maunus (1975), can
be written as,

e 1 do o
O—I~EE+(O(+MO')E 3)

where E and « represent Young’s modulus and the coefficient of free shrinkage respectively
and ¢ generally denotes temperature. The stress ¢ and strain ¢ vectors are given by
(61 0,,, T')7, respectively. In timber drying, creep is known to be a function of the bound
water X, and in this case ¢ = X,,. The bound water X, is the moisture in the porous
medium that is hygroscopically held to the cell walls. This type of creep is referred to as
mechano-sorptive creep. Equation 3 can be integrated with respect to time to give the
following equation for total strain, Ranta-Maunus (1975),

1 1+ A (’1(7)
g = Ea+ ocA¢+f, mo —(§[~dr (4)
1
= —E—6+ocA(j)+maA¢ (5)
where
A(f)= ¢r/+l_¢n. (6)

The superscripts #+ 1 and » denote the current and previous timesteps, respectively. If the
creep coefficient m equals zero, the constitutive equation reduces to stress-strain law for an
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elastic material. Equation 5 states that the total strain is the sum of the components of
elastic strain ¢, free shrinkage strain ¢, and strain due to creep ¢, such that

6= b+t (7)

If the free shrinkage and creep components of strain are modelled as initial strains, Zien-
kiewicz and Cormeau (1974), ie. ¢, = ¢,+¢., then the two-dimensional stress-strain
relationship is given by

oc=D(e—¢&)+0" (8)
where
o-\\ 0-4\)\ E’(\
= — g0 =
6 =40, 6 =(0,) &= lg” &)
)
r Xy r(\’r ’))xvv

and for plane stress problems,

&) ((atmo )AP
& = qent = {(a+ma,)Ad (10)
/?} 0

and for plane strain problems,

e (1 +v)(x+mo, )Ad

& = (&bt = (1 +v)(a+ma,)Ap;. (an
20 0
P

Poisson’s ratio is denoted by vi and ¢° represents the initial stress. The terms which comprise
the matrix D can be found in Zienkiewicz (1977). Modelling the creep term as an initial
strain enables the initial strain method, Zienkiewicz (1977), to be employed. In this manner
the incremental stresses and strains can be evaluated throughout the computational domain
for every timestep. The initial strain at the start of the timestep £° is a function of the total
stresses a at the end of the timestep, implying that an iterative procedure should be utilised
to account for the non-linearity. Zienkiewicz and Cormeau (1974) state that for most
practical problems the incurred error, by taking o as the stress distribution at the start of
the timestep, is negligible.

CVFE DISCRETISATION

For two-dimensional plane stress or plane strain problems the following mechanical
equilibrium equations apply at each point within the solid where there are no internal body
forces applied.

6_0-;‘;‘ @ r"'-" =0 12
Cx dy (12)

a,,  do,

Ay + By 0. (13)

Integrating eqns 12 and 13 using Green’s theorem across any control volume boundary
yields,
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i;(o'xx dy—T,dx)=0 (14)

§ I, dy—o,.dx)=0. (15)

The relationship between stress and strain given in eqn 8 can be written as,

2] <
Ty = Dl 18xx +D128yy '—D] 18;.\”_1)128)’)’

el ¢,
Ty = DZ 1€xx + D22£yy - D2 16xx — D228.\)'y

rxy = D33ny“D33V?g-~ (16)

The strains can be written in terms of the derivatives of the x and y components of the
displacements « and v, respectively,

Qw0 v Ou (1
b Ty T T Ty

Substituting eqns 16 and 17 into eqn 14 gives,

ov Oou o
> —D;;dx— — Dy, dxa —D,, dyel, — Dy, dyel, + D33 dxy?, = 0.

ou
§Dlldya+012dy 3y

(18)

The control volume computational grid is constructed from a finite element mesh by
connecting the centroid of each element to the midpoint of the element faces, Fig. 1. Each

Control Volume Triangular Finite

Element

Sub—Control
Volume

Fig. 1. Construction of control volume mesh from interpolation grid.
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finite element contributes two sub-control volumes to the control volume, which may be
either convex or concave. The finite element nodes are assumed to be the representative
points of the control volumes. The finite element mesh can be viewed as a background or
interpolation grid which is utilised solely to evaluate the system variables at the midpoint
of the control volume faces. Any variable within an ¢lement can be defined in terms of the
nodal values, Zienkiewicz (1977), as follows,

3
b~ Y N, (19)

i=1

where N, denotes the standard finite element shape or basis functions. The derivatives of
any variable, with respect to x and y, can be approximated within the element in the same
manner as the variable itself, such that

o0 2 ON, o & ON,

)

ox Sox T dy S oy

(20)

Summing around the control volume and substituting the finite element approximations to
the global derivatives, eqn 20, into eqn 18 gives,

nser nvert aN ’)N 5N
Z Z DIlAyl/ 8 U +D12A,y1] a l’ _D33A-X1/ »})/ D33Ax

i=1j=1

1/0

_DllA}l] XX DIZAyI/S;L+D?3AXI/y\*| _0 (21)
The same procedure is followed for eqn 15 to yield the final discretised form,

"N N "N

st nvert aN
Z Z D33A}’u »,} "y, +D23A}./ Ax DZIA’CU ox DzzAxu ay

— D33 Ay7% — Doy Axyes, + Dy Axyey, = 0 (22)

where nscv is the number of sub-control volumes, nvert is the number of vertices of the
finite element and Ax and Ay are the lengths of the components of the control volume face
in the x and y directions, respectively.

Equations 21 and 22 can be constructed for every representative point, i.e. the nodal
points on the finite element background grid, in the computational mesh to yield a system
of equations which can be written as

Ké=F (23)

where K denotes the stiffness matrix, F the force vector and é the displacements in the x
and y directions for each point. The system of equations was solved using GMRES, with a
block ILU preconditioner, for the displacements 8, from which the incremental strains and
stresses can be determined.

FINITE ELEMENT DISCRETISATION

The common starting point in all finite element analysis is the principle of virtual work
equilibrium equation. Consider a single element acted upon by nodal loads F* and body
forces p which result in an equilibrating stress field e, then the principle of virtual work
equilibrium equation becomes,
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J B%dyE:[ N’pdV +F. (24)
e e

Substituting for ¢ from eqn 8 and assuming that neither nodal loads nor body forces are
applied, then

{J B'DB d V}é" = f B"D¢’ d V—Jv Bs"dV (2%)
v Ve Ve

where B is termed the strain mairix and is given by

CN, 0
Ox
ON, o
B,=| 0 2 and where ¢ = B6 = > B3, (26)
e i=1
éN, ON;
dy  oOx
Equation 25 can be written in the form:
K0 = Fi4+Fo 27

where K° represents the element stiffness matrix and Fi. and F¢. represent the initial strain
and initial stress loadings. Equation 27 is only true if one element is considered. In general,
the global stiffness matrix and force vector are obtained by summing the elemental forms
for all elements in the structure, which can then be solved for the nodal displacements. The
element stresses can then be obtained from the relation

¢ = D(B6 —¢°) +a". (28)

The finite element formulation has been previously been well-documented, hence, only a
brief description has been presented here, and further details can be found in Zienkiewicz
(1977).

NUMERICAL RESULTS AND DISCUSSION

Two creep problems are solved numerically to highlight the advantages, disadvantages
and differences between the finite element method and the control volume finite element.
Firstly, a beam is subjected to a known variation in both space and time which yields a
one-dimensional stress distribution for which an analytical solution can be found, against
which the numerical solutions are compared. The second example considers a more realistic
engineering problem whereby the drying stresses in timber are calculated. In this case,
mechano-sorptive creep is considered which is a function, not of the temperature change,
but of the change in moisture content as the convective drying process advances in time.
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Thermal problem

The beam under consideration, Fig. 2, has dimensions 600 mm x 200 mm in the x and
y directions, respectively. Initially (z = 0 hrs) the temperature of the material is 0°C which
varies in both space and time as,

T(y, 1) = 625y (1 —e~ ). (29)

The applied temperature variation is one-dimensional in order to gain an analytical solution,
Boley and Weiner (1960), to the problem. The beam is restrained in the x direction on face
CD and in the y direction on face BC, point C is fixed in both the x and y directions.
Material properties of the beam are Young’s Modulus E = 5 x 107 Pa, coefficient of thermal
expansion o = 0.01°C~', Poisson’s ratio v = 0.25 and the creep coefficient m = 0.05x 10~7
Pa~'. Plane stress is assumed.

The finite element mesh of the computational domain, Fig. 2 ABCD, is comprised of
linear triangular elements with the total number of nodal points ranging from 60 to 2250.
A typical mesh is shown in Fig. 3. The control volume finite element mesh is constructed
from the finite element mesh, which is utilised as an interpolation grid, and is shown in
Fig. 4. The control volumes in Fig. 4 appear hexagonal, however, the internal cells are
duodecagons.

Figure 5 shows the normal stress in the x direction ¢, at point C at ¢ = oc, in practice
at 30 hrs, against the number of nodes across CD. The number of nodes in the x direction
also changed such that the aspect ratio of the triangular elements was one. Figure 5 shows
that the convergence rate of the CVFE solution is greater than that of the finite element
numerical solution regardless of mesh size. For a given mesh density, the CVFE solution
lies closer to the analytic solution.

Figure 6 shows the direct stress in the x direction o, across the section CD at 2 hrs
for both a coarse and a fine linear triangular finite element mesh. The coarse mesh contains

! e e Ie
L oF T L= = - jo=) jomt p-] =)

fic
O

Fig. 3. Finite element linear triangular mesh.
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Fig. S. Direct stress a.. at point C vs no. nodes across CD.

5 nodal points in the x direction whereas the fine mesh contains 12 nodal points. The
numerical solutions are compared against the cross-section of ¢, obtained from the ana-
lytical solution. In both cases, the error in the CVFE solution is smaller than that in the
finite element solution. The difference between the CVFE solution, on a fine mesh, is almost
indistinguishable from the analytic solutio, whereas, there is a discernable error in the finite
element solution.

The direct stress in the x direction at point C against time is shown in Figure 7 for
both coarse and fine meshes. In both cases, the error is smaller in the CVFE solution than
that for the finite element numerical solution. The results presented in this section indicate
that the control volume finite element numerical solution technique attains a greater accu-
racy than the finite element method for creep problems using linear triangular elements.
The reason for this is that the CVFE method is conservative across each control volume,
1.e. the forces are balanced at the cell level, whereas the finite element method is globally
conservative,

Drying stresses

This example concerns drying induced stresses in softwoods. The timber under con-
sideration is pine having dimensions of 160 mm x40 mm in the radial and transverse
directions respectively, Fig. 8. The timber section is symmetrical about the centrelines of
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Fig. 7. Direct stress g, at point C vs time.

both axes, therefore, only a quarter section ABCD, having dimensions 80 mm x 20 mm,
need be analysed numerically.

The timber is dried by the forced convection of hot air over the exchange surfaces,
faces AB and AD, across which heat is supplied and moisture evaporates into the airstream.
The airstream has a velocity of 2 m/s, dry bulb temperature 120°C and wet bulb temperature
80°C. The heat and mass fluxes across the symmetry planes, faces BC and CD, are assumed
to be zero. Initial conditions throughout the timber are temperature 30°C, moisture content
70% and pressure 1 bar. The thermophysical properties can be found in Perre and Degiov-
anni (1990). A drying model is employed to solve for the system variables of moisture
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content, temperature and pressure. The emphasis of this paper is on the application of the
control volume finite element method to creep in softwoods during drying, hence, the drying
model will not be discussed but details can be found in Ferguson (1995) and Ferguson and
Turner (1995b). The moisture content, also known as the dry basis moisture content is the
mass of water divided by the mass of the dry solid and has units of kg/kg, is defined as,

X +X,., fX>X,
X:{ ! Isp i (30)

Xy ifX < X,,

where X,,, X,, and X}, denote the free water, bound water and fibre saturation (typically
30%) moisture content respectively. In timber drying, the free-shrinkage and creep are
known to be directly proportional to the change in the bound water. Therefore, for this
example, ¢, eqns 10 and 11, denotes the bound water X;.

A numerical solution is obtained by solving the system of partial differential equations
which govern the drying process, Ferguson (1995), which yields a converged solution for
the system variables throughout the domain of interest. This solution can be advanced in
time by employing a suitable time marching scheme. The converged solution, at the end of
cach timestep, is then utilised to determine the mechanical load. The solution to the drying
problem is independent of stress and the drying/stress analysis coupling is through the
deformed grid which is then employed for the next timestep of the drying procedure.

Material properties of the pine are Young’s Modulus £ = 5x 10° Pa, coefficient of
thermal expansion « = 0.15"C~', Poisson’s ratio v =0.25 and the creep coefficient
m = 0.05x107% Pa~'. Plane strain is assumed.

The finite element mesh, Fig. 9 is comprised of 432 linear triangular elements exhibiting
a refinement in the region of point D. The same mesh is used in both the drying and stress
models and this refinement is required to accurately model the steep moisture content
gradients which arise in this region. The control volume mesh, Fig. 10, which is constructed
from the finite-element mesh, contains 250 polygonal cells. The internal cells are duo-
decagons whilst boundary cells are octagonal. For both meshes, nodes on face BC are
restrained in the radial direction, nodes on face CD are restrained in the transverse direction
and node C is restrained in both the radial and transverse directions.

Lk B g~ - e de ——

Fig. 9. Finite element linear triangular mesh.
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The variation of the moisture content within the board is two-dimensional, with steep
gradients developing close to the exchange surfaces, thus, inducing two-dimensional drying
stresses. Due to the complex nature of the boundary conditions across the exchange surfaces
and the tight coupling of the governing partial differential equations, no analytical solution
to the change in bound water in space and time exists. Therefore, no analytical solution to
the evolution of stress exists.

Figure 11 presents the variation of the major principal stress vs time at points B and
C. Point B lies on an exchange surface, hence, the moisture content rapidly falls below the
fibre saturation point. The surface is restrained from contracting by the middle section of
the wood and a tensile stress develops at the surface which is balanced by a compressive
stress at the inner wetter section. As the drying process proceeds a compressive force
develops in the outer sections caused by the restraint on the inner section. The reverse holds
for point C, whereby, initially a compressive stress develops which changes to a tensile
stress during the latter stages of drying. This behaviour is known as stress reversal. The
CVFE and finite element numerical solutions both show the same characteristics with only
minor differences being evident.

Figure 12 depicts the maximum tensile and compressive stresses which occur at any
point within the timber specimen vs time. Again both numerical solutions exhibit the same
characteristics. The finite element method underpredicts both the maximum tensile stress
and the maximum compressive stress when compared against the CVFE solution. Industrial
drying practitioners are concerned about checks or cracks developing within the dried

[ ey

Major Principal Stress (MPa)

Time (hrs)

Fig. 11. Major principal stress vs time for points B and C.
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Fig. 12. Maximum tensile and compressive stress vs time.

product. A crack develops if the tensile stress exceeds the ultimate tensile strength of the
wood, therefore, the discrepancy between the two solutions between 2 and 15 hrs is of
concern.

Industrial drying practitioners are also concerned with the straightness of the dried
board. Figure 13 shows the deformation of point D vs time. Although the trends of both
numerical solutions are the same, the finite element method overpredicts the deformation
in the radial and transverse directions when compared against the CVFE solution.
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Fig. 13. Nodal displacement of point A.
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CONCLUSIONS

The results presented in this paper show that the control volume finite element numeri-
cal solution technique is a valid, effective and robust tool to be employed in solving creep
problems. The CVFE discretisation which has been presented is valid to both structured and
unstructured meshes without alteration to the formulation. Two problems were presented,
firstly, a beam was subjected to a known temperature variation in time and space, and
secondly, drying induced stresses in timber were calculated.

The CVFE and finite element numerical solutions exhibited the same trends for the
drying stress problem. However, the finite element method underpredicted the stresses
whilst overpredicted the displacements within the timber sample in comparison to the
CVFE results. In the softwood drying industry, quality of the final dried product is a major
concern. Wastage through excessive cracking accounts for approximately 8% of the total
volume throughput. Therefore, if the coupled drying/stress model is to be incorporated
into a design tool for timber drying practitioners, one must err on the side of caution.

Both numerical solutions displayed the same characteristics for the beam problem.
This problem was subject to a one-dimensional temperature variation in order to solve the
problem analytically. The CVFE method proved to be more accurate for all the linear
triangular meshes used with total nodes ranging from 60 to 2250. The CVFE method is
locally conservative, in that the forces are balanced around each control volume whereas
the finite element method is globally conservative. High ordered control volumes, duo-
decagons, are constructed from the linear triangular finite element mesh which leads to a
smaller conservation error across each cell than if, for instance, pentagons were employed.
This coupled with the fact that a one point Radua integration rule was used in the finite
element method accounts for the difference. Future work includes comparing the CVFE
and FE methods for a linear quadrilateral mesh from which an octagonal control volume
mesh is derived.
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